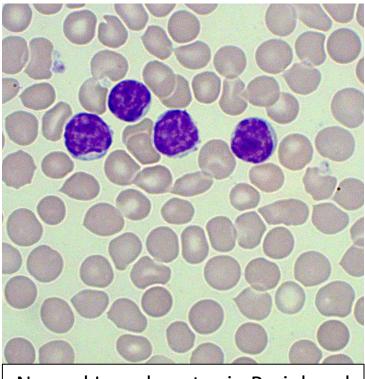


Portsmouth Hospitals University NHS Trust

Lymphoma: A Multidisciplinary Approach.

Presented By Jennifer Mills



Outline of Lecture.

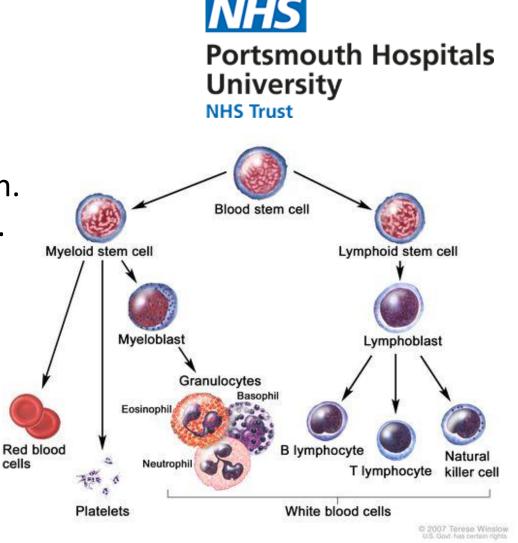
- Overview of Lymphoma vs. Lymphoproliferative Disease.
- The role of Blood Sciences in Lymphoma diagnosis.
 - Haematology
 - Biochemistry
 - Immunology.
- How lymphomas are staged and treated.
- The role of Blood Sciences in monitoring and support.
- Further Treatment options.

Introduction.

Normal Lymphocytes in Peripheral Blood.

• Malignancy affecting lymphocytes.

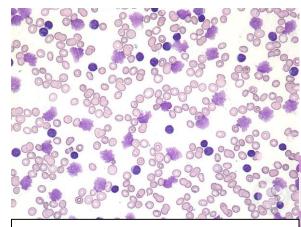
- Not the ONLY type of lymphocyte malignancy.
 - Differentiating between lymphoma and other disorders is key in diagnosis.

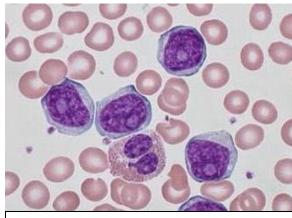

• Lymphoma originates in lymph nodes.

- Can spread to the bone marrow.
- Can "spill over" into peripheral blood.
- Different to other haematological malignancies.
 - Blurs the line between haematological and solid organ malignancy.
 - This is reflected in diagnosis and management.

Lymphocytes: Basics.

- Part of the **adaptive** immune response.
 - Make antibodies to help fight of infection.
 - Retain memory to fight future infections.
- Come in **three** main types:
 - B-cells.
 - T-cells.
 - T-helper cells.
 - Cytotoxic T-cells.
 - Natural Killer Cells.
- Initially made in the bone marrow.
- Circulate in small numbers in the peripheral blood.
- Function in the lymph nodes.


Lymphoma vs. Lymphoproliferative.


- Lymphomas are not the only type of lymphocyte malignancy.
- Other types of Lymphoproliferative disorders (LPDs) originate in bone marrow.
 - Present in peripheral blood and are diagnosed using bone marrow.
- LPD's can still found in lymph nodes.
 - Both are chronic diseases.
 - Mature cells with <20% blast population.
 - That doesn't mean they can't be dangerous!
 - **Both** fall under the following WHO classifications:
 - Mature B-cell neoplasms.
 - Mature T- and NK-cell neoplasms.
 - Hodgkin Lymphoma.

Examples of LPD's.

Hairy Cell Leukaemia

Chronic Lymphocytic Leukaemia

B-cell prolymphocytic leukaemia

- Chronic Lymphocytic Leukaemia.
- B-cell prolymphocytic leukaemia.
- Hairy Cell Leukaemia.
- T-cell Prolymphocytic leukaemia.
- T-cell large granular lymphocytic leukaemia.
- Chronic lymphoproliferative disorder of NK cells.
- Aggressive NK cell leukaemia.
- Sézary syndrome.

Lymphoma: Statistics.

Portsmouth Hospitals University NHS Trust

• Like most haematological malignancies, lymphoma is rare.

Incidence.

- Accounts for 1-4% of total cancer cases in the UK.
- Non-Hodgkin Lymphoma is the 7th most common cancer in the UK.
- Hodgkin Lymphoma is the 19th most common cancer for males.

Risk Factors.

- Slightly more common in males.
- Typically affects older people (75-84 years old.)
- Exposure to mutagenic chemicals.
- Other conditions e.g. HIV.

Hodgkin vs. Non-Hodgkin.

Portsmouth Hospitals University NHS Trust

There are two main "types" of lymphoma.

Hodgkin Lymphoma.

- Specific type of lymphoma.
- Often present in cervical (neck) lymph-nodes.
- Identified by the presence of Hodgkin and Reed-Sternberg Cells (HRS)
- No HRS? Likely Not Hodgkin Lymphoma!

Non-Hodgkin Lymphoma.

- ALL other types of lymphoma!
- Can vary significantly in the way cells look, which lymph-nodes they originate in, aggression etc.
- Can be difficult to distinguish from LPDs.

Hodgkin Lymphoma: Examples.

Portsmouth Hospitals University NHS Trust

- There are **6** Entries under the WHO classification of Hodgkin Lymphoma.
- These are ALL lymphoma.

Hodgkin Lymphoma.

Nodular lymphocyte predominant Hodgkin lymphoma

Classical Hodgkin lymphoma, introduction

Nodular sclerosis classical Hodgkin lymphoma

Mixed cellularity classical Hodgkin lymphoma

Lymphocyte-rich classical Hodgkin lymphoma

Lymphocyte-depleted classical Hodgkin lymphoma

Non-Hodgkin Lymphoma: Examples.

Portsmouth Hospitals University NHS Trust

- There are **34 Entries Mature B-cell neoplasms.**
- There are 23 Entries Mature T- and NK-cell neoplasms.

Not all of these are lymphoma!

Mature B-cell neoplasms lymphomas	Mature T- and NK-cell neoplasms lymphomas.
Splenic marginal zone lymphoma	Adult T-cell leukaemia/lymphoma
Lymphoplasmacytic lymphoma	Enteropathy-associated T-cell lymphoma
Nodal marginal zone lymphoma	Angioimmunoblastic T-cell lymphoma
Follicular lymphoma	Subcutaneous panniculitis-like T-cell lymphoma
Mantle cell lymphoma	Peripheral T-cell lymphoma, NOS
Burkitt lymphoma	Primary cutaneous peripheral T-cell lymphomas
Diffuse large B-cell lymphoma (DLBCL), NOS	Hepatosplenic T-cell lymphoma

Non-Hodgkin: Aggressive vs. Indolent University

Indolent lymphomas:

- Grow slowly.
- May not spread from original site.
- Often asymptomatic.
- May not require treatment.
- Also known as low grade.

Aggressive lymphomas:

- Grow rapidly.
- Spread faster.
- Will always have symptoms e.g. pain, weight loss.
- Higher mortality.
- Also known as high grade.

Non-Hodgkin: Aggressive vs. Indolent **NHS** Portsmouth Hospitals University

Aggressive Types.	Indolent Types.
Burkitt's Lymphoma	Follicular Lymphoma
Diffuse large B-cell Lymphoma	Marginal Zone Lymphoma
Peripheral T-cell lymphoma	Cutaneous T-Cell Lymphoma
Angioimmunoblastic lymphoma	Lymphoplasmacytic lymphoma

- Some types of lymphomas are **always** aggressive.
- Some low grade types can **transform** to high grade.

Clinical Presentation.

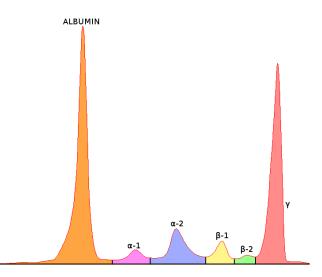
- Lymph node enlargement.
 - Key Feature.
 - Often painless.
- T-cell types can present with skin infiltration (sores/rashes).
- Constitutional Symptoms (B-Symptoms).
 - Weight loss (>10% of body weight in 6 months.)
 - Extreme Fatigue.
 - Hepatosplenomegaly.
- May have cytopenia symptoms.
 - Anaemia: Anaemia:

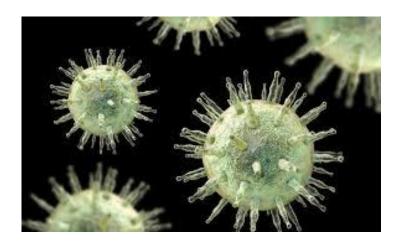
 - Increased incidence of infection:
 Veutrophils

Diagnosis: Biochemistry

- May be normal!
- Common abnormal markers:
 - **↑LDH:** Cell turn over marker.
 - **↑β2M:** General tumour cell marker.
 - **↑CRP:** Inflammation marker.
 - **↑Total Protein**: **IF** a paraprotein is produced.
- Other organs may be damaged by lymphoma infiltration.
 - Liver Dysfunction (个Bilirubin 个ALT/AST)
 - **Renal Dysfunction** (个Urea 个Creatine)

Diagnosis: Other Specialities


• Immunology.


- Some Lymphomas produce a paraprotein.
 - Lymphoplasmacytic lymphoma: IgM

• Microbiology.

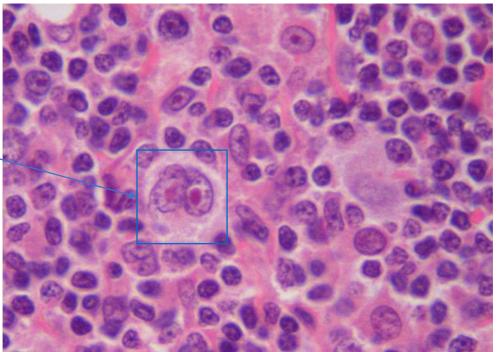
- Patients with HIV/AIDS are at higher risk of:
 - Burkitt's Lymphoma.
 - Primary CNS lymphoma.
- Epstein Barr Virus can trigger:
 - Burkitt's Lymphoma.
 - Hodgkin Lymphoma.
 - Diffuse Large B cell Lymphoma.

Diagnosis: Haematology

- May be normal!
- Full Blood Count:
 - \downarrow Red cells and \downarrow Platelets: Bone marrow infiltration.
 - Changes to white cells:
 - **↑ Lymphocytes:** Spill-over from affected organs.
 - \downarrow Other white cells e.g. neutrophils: Marrow infiltration.
- ESR: Increased if there's a paraprotein.
- Blood Film:
 - Identifies LPD's or other leukaemia's.
 - MAY identify lymphoma cells if there is spill-over from organs.

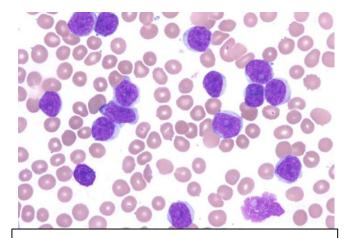
Diagnosis: Morphology.

- Lymphoma is identified in lymph nodes.
- A biopsy is taken of a suspicious node.
 - Different methods depending on node location:
 - Fine Needle Aspirate.
 - Core Needle Biopsy.
 - Open Biopsy.
- Reviewed by Histologists or Lymphoma specialists.
- Bone marrow biopsies are part of diagnosis.
- Peripheral blood shouldn't be used for diagnosis.

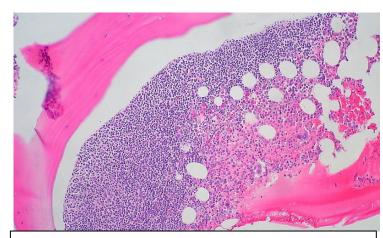

Diagnosis: Morphology: Hodgkin.

- Hodgkin lymphoma is rarely seen in marrow.
- Never seen in peripheral blood.
- Key feature is the Hodgkin Reed-Sternberg Cells.
 - May be infiltration of other lymphoid cells such as T-cells around the HRS cells.
- Eosinophilia is common.

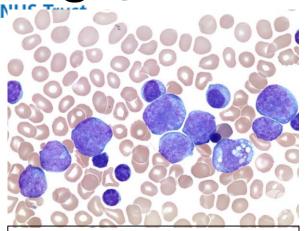
Examples of Hodgkin Reed-Sternberg Cells.

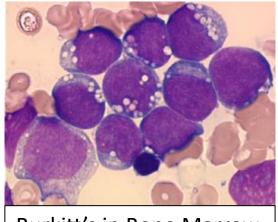


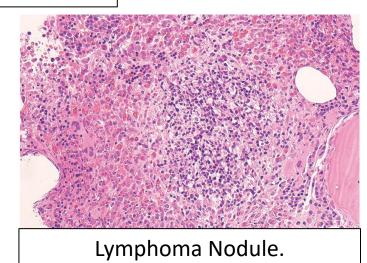
Diagnosis: Morphology: Non-Hodgkin.


- Portsmouth Hospitals University NHS Trust
- Can be seen in the bone marrow in advanced stages.
- Sometimes seen in peripheral blood.
 - Lymphocyte counts can be >100x10⁹/L. (Reference: 4-11x10⁹/L)
- Lymphocytes look different depending on the lymphoma.
- There are different bone marrow distributions.
 - Nodular.
 - Interstitial.
 - Para-trabecular.
- This is a valuable part of diagnosis!

NHS

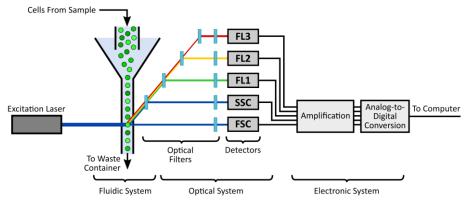

Morphological Identification: Non-Horsestyn.


Follicular Lymphoma in Peripheral Blood.


Follicular Lymphoma in Bone Marrow.

Diffuse Large B-cell in Peripheral Blood.

Burkitt's in Bone Marrow.



Diagnosis: Immunophenotyping.

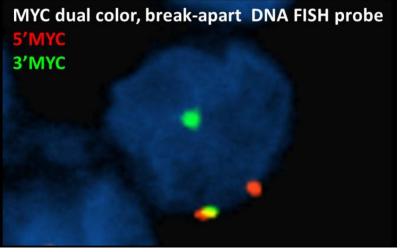
- This can be done by **flow cytometry** or by **immunohistochemistry**.
- Different cell types express different markers.
 - These are "clusters of differentiation/CD Markers."
- Lymphoma cells can be identified by expression of surface CD markers.
 - The combination of markers can tell us what lymphoma the patient has.
 - Supports and confirms morphological findings.

NAS Portsmouth Hospitals University

NHS Trust

CD20 staining of Follicular Lymphoma.

Diagnosis: Immunophenotyping.


Portsmouth Hospitals University

CD Marker	Norm	nal Cells.	Lymphomas NHS Trust				
	B-cell	T-helper	Hodgkin	Mantle Cell	Follicular	Angioimmunoblastic T-cell	Burkitt's
CD45	+	+	-	+	+	+	+
CD19	+	-	-	+	+	-	+
CD20	+	-	+/-	+	+	+	+
CD5	-	+	-	-	+	-	-
CD10	-	-	-	+	-	+/-	+
CD30	-	-	+	-	-	-	-
CD15	-	-	+	-	-	-	-
CD4	-	+	-	-	-	+	-
CD43	+/-	+	-	+	-	+	+

Diagnosis: Genetics.

- Some lymphomas have diagnostic mutations.
- Others have generic mutations:
 - These may be diagnostic in combination with other features.
 - Or are useful for prognosis.
- Testing can be done on any tissue sample containing lymphoma cells.
- Testing includes:
 - Karyotyping.
 - Fluorescence In Situ Hybridisation.
 - Molecular techniques e.g. Next Generation Sequencing.

Diagnosis: Genetics: Examples.

Portsmouth Hospitals University NHS Trust

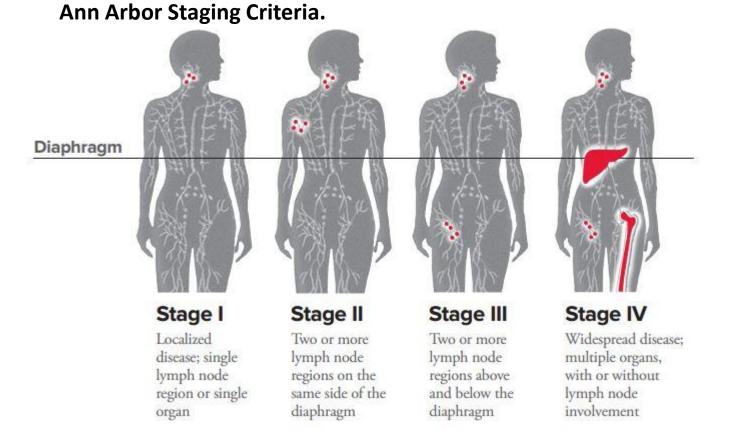
t(8;14)(q24;14q32) MYC/IGH gene rearrangement.

- The *IGH* gene is commonly involved in B-cell lymphomas.
- Mutations involving MYC are common in high grade disease e.g.
 Burkitt's Lymphoma.

t(14;18)(q32;q21) IGH/BCL2 gene rearrangement.

• Seen in 80% of Follicular Lymphoma.

T-Cell Receptor Rearrangement.


• Clonal populations have the same T-cell receptor. Del(17p) or Molecular *TP53* Mutations.

- Common in many leukaemia's.
- Associated with aggressive disease/poor prognosis.

Staging.

- Imaging is used stage lymphoma.
- PET/CT can show smaller areas of disease.
- Lymph nodes position is important.
- Affected nodes on **both sides** of the diaphragm suggest **increased spread.**
- Involvement of nonlymphoid organs indicates **metastasis.**
- Bone marrow analysis is part of staging, not just diagnosis!

Treatment.

- There are lots of options.
- Depends on stage, location of nodes, comorbidities, age etc.

"Watch and Wait"

- Patients with indolent disease.
 - Only in cases where the disease is stage I or II.
- Patients who are asymptomatic.

Cytotoxic Chemotherapy.

- Advanced stages.
- Aggressive disease.
- Combinations of drugs to kill proliferating cells.
- **CHOP:** cyclophosphamide, doxorubicin, vincristine and prednisolone
- **DA-EPOCH-R:** etoposide phosphate, prednisone, vincristine sulfate, cyclophosphamide, hydroxydaunorubicin and rituximab.

Treatment.

Radiotherapy.

- Can be targeted or total body depending on stage.
- Can be used to "de-bulk" large nodes.
- Used in combination with chemotherapy.

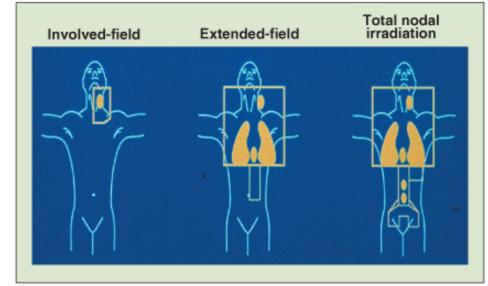


Figure 1: Radiotherapy Techniques and Fields—Involved-field, extendedfield, and total nodal irradiation in a patient with left cervical involvement of Hodgkin's lymphoma (clinical stage I).

Specific Agents.

- Rituximab
 - Anti-CD20 antibody: used for B-cell lymphomas.
 - Used to treat new cases, relapsed cases and maintain response.
- Ibrutinib
 - Bruton's Tyrosine Kinase inhibitor: Signalling molecule in B-cells.
 - Used to treat: Mantle Cell, Marginal zone, *TP53* mutated cases.

Pathology In Treatment: Haematology. Portsmouth Hospitals

- Cytotoxic Chemotherapy.
 - \downarrow Red Cells \downarrow Platelets \downarrow White cells \downarrow Neutrophils
- Radiotherapy.
 - \downarrow Red Cells \downarrow Platelets \downarrow White cells \downarrow Neutrophils
- Specific Agents.
 - Ibrutinib
 - 个 White Cells early in treatment (changes attachment to the stroma)
 - Rituximab.
 - \downarrow Lymphocytes including non-lymphoma cells.

Pathology In Treatment: Transfusion.

- Patients may require transfusions of:
 - Packed Red Blood Cells
 - Platelets
- Because of the suppression of the bone marrow from:
 - Chemotherapy
 - Radiotherapy.
- Less of an issue with specific agents.
- Patients may have special requirements:
 - Irradiated:
 - Specific chemotherapies e.g. fludarabine.
 - Treated Hodgkin Lymphomas.
 - Stem cell transplants.

Pathology In Treatment: Biochemistry. Portsmouth Hospitals

- Cytotoxic Chemotherapy.
 - Increased strain on the liver and kidneys.
- Radiotherapy.
 - Organs near the radiotherapy site may be affected.
- Biochemistry can monitor the effect of drugs to minimise organ damage.
- LDH and β2M may increase or decrease depending on treatment efficacy.
- Most patients will be immunocompromised.
 - Due to treatment or disease.
 - CRP: Monitors for infections.

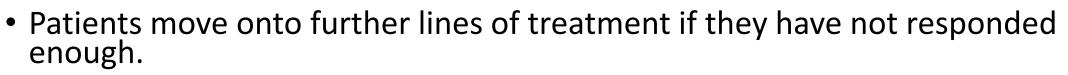
Tumour Lysis Syndrome and the Lab.

- Occurs when lots of cancer cells die quickly and release their contents into the blood stream.
- Can be fatal- needs to be recognised and treated rapidly.
- Is identified using pathology.

Indices	Abnormality in TLS.
White Cell Count/Lymphocytes	\uparrow
Potassium	\uparrow
Phosphate	\uparrow
Calcium	\checkmark
Urea	\uparrow
Lactic Acid	\uparrow

Finishing Treatment.

- Patients will have repeat biopsies.
- Aim is to see reduction or absence of lymphoma cells.
- This is confirmed using imaging.
 - Shows changes to size and activity.
- Ideally the patient would have no lymphoma cells after treatment.
 - Early stage disease may be completely cleared.
 - Advanced patients may have some residual disease.
 - Any reduction in disease will improve patient quality of life.



Portsmouth Hospitals University NHS Trust

Initial Diagnosis After 2 cycles ABVD chemotherapy

What Next?

- All patients need regular monitoring.
 - Blood Tests.
 - Clinic and GP visits.

- Further therapies depend on the many factors.
- Patients who relapse after treatment develop more severe disease.
 - Worsening symptoms.
 - Increased white cell count.
 - Organ dysfunction.
- If patients fails treatments and meet requirements, they may have a stem cell transplant.
 - Transplants are the only true "cure" for haem malignancies.
 - They come with many risks.
 - They are highly dependent on patient status.

Portsmouth Hospitals University

Thank you for Listening.

Any Questions?